New Diterpenoids from Tinospora capillipes

by Zha-Jun Zhan^a), Xiao-Yong Zhang^a), Xiao-Rong Hou^a), Cheng-Ping Li^b), and Wei-Guang Shan^{*a})

 ^a) College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
^b) College of Biology and Environment Engineering, Zhejiang Shuren University, Hangzhou, 310015, P. R. China (phone: +86-571-88871075; e-mail: tianranyaowu@zjut.edu.cn)

A phytochemical study of the roots of *Tinospora capillipes* resulted in the characterization of two new highly unsaturated diterpenoids, tinocapilactones A and B (1 and 2), as well as of six known ones. The structures of 1 and 2 were assigned on the basis of extensive 1D- and 2D-NMR experiments, combined with mass-spectrometric methods.

Introduction. – Species of the genus *Tinospora*, widely distributed over Asia and Africa, are well-known for their medicinal properties [1]. The distinctive constituents of this genus are the clerodane-based furonoid diterpenoids [2]. *Tinospora capillipes* GAGNEP, a member of the Menispermaceae family, is a special plant native in South China. Its rhizome (*Radix Tinosporae*, *R.T.*) has been used in traditional Chinese medicine (TCM) for treating sore throat, laryngitis, gastralgia, and diarrhea for thousands of years [3]. A series of clerodane-type diterpenes, botanic steroids, and alkaloids isolated from this species were reported [4–8]. In the present study, two new highly unsaturated diterpenoids, namely tinocapilactones A and B¹) (**1** and **2**), were isolated from the roots of *T. capillipes*, together with six known ones, *i.e.*, columbin (**3**) [9], palmatoside C (**4**) [10], isocolumbin (**5**) [11], tinocallones A and B (**6** and **7**), and epitinophylloloside (**8**) [7]. Their structures were established by mass-spectrometric and spectroscopic analyses, especially 2D-NMR techniques (HMQC, HMBC, and NOESY).

Results and Discussion. – Tinocapilactone A (1) was obtained as an optically active, colorless, amorphous powder. The HR-ESI-MS $(m/z 395.1473 ([M + Na]^+))$ revealed a molecular formula $C_{23}H_{28}O_9$, suggesting the presence of ten degrees of unsaturation. Strong IR absorption bands at 1746 and 1716 cm⁻¹ were attributable to δ -lactone and ester CO groups, respectively. The ¹³C-NMR spectrum indicated the presence of 23 C-atoms comprising four CO groups (δ (C) 176.2, 175.0, 167.6, and 165.4), three olefinic C-atoms (δ (C) 147.9, 147.7, 136.8, 129.5, 125.2, and 118.6), an O-bearing CH group (δ (C) 75.2), one O-bearing quaternary C-atom (δ (C) 80.0), and three MeO groups (δ (C) 52.5, 52.0, and 51.7) (*Table*). Among the four CO groups, two relatively high-field C-atom signals (δ (C) 167.6 and 165.4) were assigned to two α,β -unsaturated ester CO groups, which was confirmed by the UV maximum at 264 nm (log ε 4.09). The

¹⁾ Trivial atom numbering; for systematic names, see Exper. Part.

^{© 2009} Verlag Helvetica Chimica Acta AG, Zürich

¹H-NMR spectrum of **1** revealed signals for two Me groups (δ (H) 1.11 and 1.35 (2*s*)), five olefinic H-atoms (δ (H) 6.42 (*dd*, *J* = 7.7, 5.0), 6.32 (*dd*, *J* = 7.7, 1.2), 6.44 (*d*, *J* = 16.3), 6.12 (*d*, *J* = 16.3), and 5.82 (*s*)), three MeO groups (δ (H) 3.91, 3.76, and 3.63 (3*s*)), and an O-bearing CH group (δ (H) 5.24 (*d*, *J* = 5.4)). Seven out of the ten degrees of unsaturation were due to four CO groups and three C=C bonds; the remaining three degrees of unsaturation, thus, had to be accounted for by three rings. The data mentioned above disclosed **1** as a clerodane-type diterpene, containing no furane subunit.

The ¹H- and ¹³C-NMR and HMQC data of **1** allowed the assignment of all H-atoms to the connected C-atoms. The scaffold of **1** was constructed by a HMBC experiment, which allowed the assemblage of all C-atoms, including quaternary C-atoms and hetero atoms (*Fig. 1*). The HMBC correlation H-C(1)/C(18) indicated that C(1) and C(18) were linked by an O-atom. The $\delta(H)$ of Me(19) correlated with the $\delta(C)$ at 37.0 (C(5)) and 80.0 (C(4)) revealing the presence of an OH at C(4). The quaternary-C-atom signal at $\delta(C)$ 175.0 was allocated to C(17) by the strong correlations between C(17) and H-C(8) ($\delta(H)$ 2.58 (t, J = 8.5)). The assemblage of C(13) and C(12) was established by the HMBC correlations H-C(14)/C(13) and H-C(14)/C(12). The key cross-peaks H-C(14)/C(15) and H-C(14)/C(16) allowed to identify the linkages C(14)–C(15) and C(13)–C(16), respectively. Thus, the constitutional formula of **1** was established.

The relative configuration of **1** was deduced by a NOESY analysis (*Fig.* 2). An NOE correlation between Me(20) and H–C(8) indicated that these were on the same face of the molecule, and were tentatively assumed as β -oriented; therefore the ester

	1		2	
	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$
H-C(1)	5.20 (d, J = 4.5)	75.2	5.26 (d, J = 4.3)	74.9
H-C(2)	6.42 (dd, J = 7.7, 5.0)	129.5	6.42 (dd, J = 7.7, 5.2)	129.6
H-C(3)	6.32 (dd, J = 7.7, 1.2)	136.8	6.33 (d, J = 7.7)	136.8
C(4)	_	80.0	_	79.8
C(5)	_	37.0	_	36.8
CH ₂ (6)	$1.62 - 1.65 (m, H_a),$	27.5	$1.64 - 1.68 (m, H_a),$	28.1
	$1.55 - 1.60 (m, H_{\beta})$		$1.54 - 1.60 (m, H_{\beta})$	
$CH_{2}(7)$	1.85 - 1.92(2m)	20.6	1.84 - 1.92(2m)	20.9
H-C(8)	2.58(t, J=8.5)	47.0	2.63(t, J = 8.0)	46.7
C(9)	_	40.6	_	40.6
H - C(10)	1.82(s)	52.6	1.78(s)	53.7
H - C(11)	6.44 (d, J = 16.3)	147.9	7.04 (d, J = 16.4)	149.8
H - C(12)	6.12 (d, J = 16.3)	125.2	6.29 (d, J = 16.4)	118.8
C(13)	_	147.7	_	159.1
H - C(14)	5.82(s)	118.6	5.91 (s)	117.4
C(15)	_	165.4	_	170.4
C(16)	_	167.6	5.96(s)	102.7
C(17)	_	175.0	_	175.4
C(18)	_	176.2	_	176.1
Me(19)	1.11(s)	25.7	1.09(s)	25.5
Me(20)	1.35(s)	25.9	1.39(s)	26.4
MeO-C(15)	3.91 (s)	52.5		
MeO-C(16)	3.76(s)	52.0	3.57(s)	56.0
MeO-C(17)	3.63(s)	51.7	3.64(s)	51.7

Table. ¹H- and ¹³C-NMR Data (CDCl₃, 500 and 125 MHz, resp.) of **1** and **2**. δ in ppm, J in Hz.

Fig. 1. Selected HMBC $(H \rightarrow C)$ correlations of 1

group of C(17) must be α -oriented. The correlation H–C(8)/H_{β}–C(6) indicated that H_{β}–C(6) was also β -configured. The NOE correlations H_{α}–C(6)/Me(19), Me(19)/H–C(10), and H–C(10)/H–C(1) indicated that H–C(1), H–C(10), and Me(19) are on the α -face. Complete ¹H- and ¹³C-NMR assignments (*Table*) were accomplished by a combination of 2D-NMR techniques, including HMQC, HMBC, and NOESY. Thus, the structure of tinocapilactone A¹) (**1**) was established.

Tinocapilactone B (2) had the molecular formula $C_{22}H_{26}O_8$ based on HR-ESI-MS analysis (m/z 419.1710 ($[M+H]^+$)). The compound was also obtained as colorless, amorphous powder. Its NMR spectra showed similarity with those of 1, except for the

Fig. 2. Key NOESY correlations and relative configuration of **1**

signals of C(11) to C(16), which suggested that **2** possesses the same core (clerodanetype diterpene with δ -lactone) as **1** but differs in the side chain. The structure of this side chain was determined to be an ethenyl-linked α,β -unsaturated lactone moiety with a MeO group at C(16) by comparison of the NMR data of **2** with those of yunnancoronarin C [12]; this was confirmed by HMBC data (*Fig. 3*). The interpretation of the ¹H-NMR and NOESY data revealed that **2** has the same relative configuration as **1**. Thus, the structure of tinocapilactone B¹) (**2**) was established, except for the relative configuration at C(16).

Fig. 3. Selected HMBC $(\mathrm{H}\,{\rightarrow}\,\mathrm{C})\,$ correlations of 2

The present study showed that the major constituent, tinocapilactone A (1), with significant anti-inflammatory activities may be the bioactive compound of *T. capillipes* [13]. The study also revealed that the constituents of this plant are similar to those of *T. saggitta* (especially concerning the major constituents, such as compounds **3**, **4**, and **8**) [14], which can explain why these two species are used for the same treatments in the traditional folk medicine in China.

Experimental Part

General. All solvents used were of anal. grade (Shanghai Chemical Plant). TLC: precoated silica gel GF_{254} plates (Qingdao Haiyang Chemical Plant). Column chromatography (CC): silica gel (SiO₂; 230–400 mesh), SiO₂ H-60, and MCI-CHP20P gel (75–150 μ ; Mitsubishi Chemical Industries Ltd.). Optical rotations: Perkin-Elmer 341 polarimeter. UV Spectra: Shimadzu UV-2450 spectrometer; λ_{max} (log ε). IR Spectra: Thermo Nicolet-6700 spectrophotometer; in cm⁻¹. NMR spectra: Bruker AM-500 apparatus; δ in ppm rel. to Me₄Si, J in Hz. ESI-MS: Agilent 6210-Lc/Tof mass spectrometer; in m/z.

Plant Material. The plant material used for this study was collected from Guangxi Province, P. R. China, in August 2007, and identified by Prof. *Yong-Hong Zhang* of the Fujian Medical University, P. R. China. A voucher specimen (No. 20070823T) was deposited with the Zhejiang University of Technology.

Extraction and Isolation. The air-dried roots of *T. capillipes* (3.2 kg) were coarsely powdered and percolated with 95% EtOH/H₂O. After solvent removal, the crude extract (252 g) was suspended in H₂O (3 l) and extracted with AcOEt (5×500 ml) to afford the AcOEt-soluble fraction. The AcOEt-soluble fraction (72 g) was subjected to CC (SiO₂, petroleum ether/acetone $4:1 \rightarrow 0:1$, then MeOH): to give three major fractions, *Frs. 1* (43 g), 2 (3.0 g), and 3 (10.1 g). Compound **3** (30 g) was purified by recrystallization of *Fr. 1* from petroleum ether/acetone 2:1. The filtrate was evaporated to give a yellow residue, which was further purified by CC (SiO₂, petroleum ether/AcOEt $4:1 \rightarrow 2:1$): **1** (1.6 mg), **2** (6.0 mg), and **5** (50 mg). *Fr. 2* was also separated by CC (SiO₂, CHCl₃/i-PrOH 20:1 \rightarrow 10:1): **6** (230 mg) and **7** (34 mg). *Fr. 3* was subjected to CC (*MCI CHP20P* gel, MeOH/H₂O 0:10 \rightarrow 4:6): **8** (2.1 g) and **4** (3.2 g).

Tinocapilactone A (=rel-(2Z)-2-{*i*[R,4R,4aR,7R,8S,8aS}-*3*,4,4a,5,6,7,8,8a-Octahydro-4-hydroxy-7-(*methoxycarbonyl*)-4a,8-dimethyl-3-oxo-1,4-etheno-1H-2-benzopyran-8-yl]ethenyl}but-2-enedioic Acid Dimethyl Ester; **1**): Colorless amorphous powder. UV (CHCl₃): 264 (4.09). $[a]_D^{2D} = +34.9$ (c = 0.2, CHCl₃). IR (KBr): 3482 (OH), 2954, 1746 (C=O), 1716 (C=O), 1437, 1375, 1268, 1205, 1154, 927, 751. ¹H- and ¹³C-NMR: *Table*. ESI-MS (pos.): 449 ($[M+H]^+$). HR-ESI-MS: 449.1815 ($[M+H]^+$, C₂₃H₂₉O⁺₉; calc. 449.1812).

Tinocapilactone B (=rel-(*I*R,4R,4*R*,7R,8S,8*a*S)-8-[(*I*E)-2-(2,5-*Dihydro-2-methoxy-5-oxofuran-3-yl)ethenyl*]-3,4,4*a*,5,6,7,8,8*a*-octahydro-4-hydroxy-4*a*,8-dimethyl-3-oxo-1,4-etheno-1H-2-benzopyran-7-carboxylic Acid Methyl Ester; **2**): Colorless amorphous powder. UV (CHCl₃): 262 (4.11). $[a]_{D}^{2D}$ = +57.3 (*c* = 0.6, CHCl₃). IR (KBr): 3466 (OH), 2922, 2851, 1761 (C=O), 1728 (C=O), 1464, 1374, 1154, 972, 723. ¹H- and ¹³C-NMR: *Table*. ESI-MS (pos.): 419 ([*M*+H]⁺). HR-ESI-MS: 419.1710 ([*M*+H]⁺, C₂₂H₂₇O^{*}₈; calc. 419.1706).

REFERENCES

- [1] R. Maurya, V. Wazir, R. S. Kapil, J. Indian Chem. Soc. 1994, 71, 361.
- [2] A. K. Pathak, D. C. Jain, R. P. Sharma, *Pharm. Biol.* 1995, 33, 277.
- [3] National Commission of Chinese Pharmacopoeia, 'Pharmacopoeia of the People's Republic of China', Vol. 1, Chemical Industry Press, Beijing, 2005, p. 150.
- [4] H. M. Chang, A. M. El-Fishawy, D. J. Slatkin, P. L. Schiff Jr., Planta Med. 1984, 50, 88.
- [5] C. Q. Song, R. S. Xu, Y. M. Xu, Acta Chim. Sin. 1988, 46, 1049.
- [6] C. Q. Song, R. S. Xu, Chin. Chem. Lett. 1991, 2, 13.
- [7] C. Q. Song, R. S. Xu, Chin. Chem. Lett. 1992, 3, 185.
- [8] Q. R. Shi, Y. H. Shen, C. Zhang, R. H. Liu, W. D. Zhang, Zhongguo Tianran Yaowu 2008, 6, 186.
- [9] N. L. Hungerford, D. P. A. Sands, W. Kitching, Aust. J. Chem. 1998, 51, 1103.
- [10] M. Yonemitsu, N. Fukuda, T. Kimura, T. Komori, Liebigs Ann. Chem. 1987, 193.
- [11] N. K. Sarmad, P. Padma, L. Khosar, Fitoterapia 1998, 69, 541.
- [12] C. Zhou, Q. Zhao, X. J. Hao, Y. Z. Cheng, X. Hong, Acta Bot. Yunnan. 1999, 21, 253.
- [13] J. O. Moody, V. A. Robert, J. D. Connolly, P. J. Houghton, J. Ethnopharmacol. 2006, 104, 87.
- [14] L.-M. Shi, R.-Q. Li, W.-H. Liu, Helv. Chim. Acta 2008, 91, 978.

Received October 7, 2008